Нормальная и тангенциальная составляющие ускорения. Тангенциальная составляющая ускорения Касательное ускорение точки

Даны основные формулы кинематики материальной точки, их вывод и изложение теории.

Содержание

См. также: Пример решения задачи (координатный способ задания движения точки)

Основные формулы кинематики материальной точки

Приведем основные формулы кинематики материальной точки. После чего дадим их вывод и изложение теории.

Радиус-вектор материальной точки M в прямоугольной системе координат Oxyz :
,
где - единичные векторы (орты) в направлении осей x, y, z .

Скорость точки:
;
.
.
Единичный вектор в направлении касательной к траектории точки:
.

Ускорение точки:
;
;
;
; ;

Тангенциальное (касательное) ускорение:
;
;
.

Нормальное ускорение:
;
;
.

Единичный вектор, направленный к центру кривизны траектории точки (вдоль главной нормали):
.


.

Радиус-вектор и траектория точки

Рассмотрим движение материальной точки M . Выберем неподвижную прямоугольную систему координат Oxyz с центром в некоторой неподвижной точке O . Тогда положение точки M однозначно определяются ее координатами (x, y, z) . Эти координаты являются компонентами радиус-вектора материальной точки.

Радиус-вектор точки M - это вектор , проведенный из начала неподвижной системы координат O в точку M .
,
где - единичные векторы в направлении осей x, y, z .

При движении точки, координаты изменяются со временем . То есть они являются функциями от времени . Тогда систему уравнений
(1)
можно рассматривать как уравнение кривой, заданной параметрическими уравнениями. Такая кривая является траекторией точки.

Траектория материальной точки - это линия, вдоль которой происходит движение точки.

Если движение точки происходит в плоскости, то можно выбрать оси и системы координат так, чтобы они лежали в этой плоскости. Тогда траектория определяется двумя уравнениями

В некоторых случаях, из этих уравнений можно исключить время . Тогда уравнение траектории будет иметь зависимость вида:
,
где - некоторая функция. Эта зависимость содержит только переменные и . Она не содержит параметр .

Скорость материальной точки

Скорость материальной точки - это производная ее радиус-вектора по времени.

Согласно определению скорости и определению производной:

Производные по времени, в механике, обозначают точкой над символом. Подставим сюда выражение для радиус-вектора:
,
где мы явно обозначили зависимость координат от времени. Получаем:

,
где
,
,

- проекции скорости на оси координат. Они получаются дифференцированием по времени компонент радиус-вектора
.

Таким образом
.
Модуль скорости:
.

Касательная к траектории

С математической точки зрения, систему уравнений (1) можно рассматривать как уравнение линии (кривой), заданной параметрическими уравнениями. Время , при таком рассмотрении, играет роль параметра. Из курса математического анализа известно, что направляющий вектор для касательной к этой кривой имеет компоненты:
.
Но это есть компоненты вектора скорости точки. То есть скорость материальной точки направлена по касательной к траектории .

Все это можно продемонстрировать непосредственно. Пусть в момент времени точка находится в положении с радиус-вектором (см. рисунок). А в момент времени - в положении с радиус-вектором . Через точки и проведем прямую . По определению, касательная - это такая прямая , к которой стремится прямая при .
Введем обозначения:
;
;
.
Тогда вектор направлен вдоль прямой .

При стремлении , прямая стремится к касательной , а вектор - к скорости точки в момент времени :
.
Поскольку вектор направлен вдоль прямой , а прямая при , то вектор скорости направлен вдоль касательной .
То есть вектор скорости материальной точки направлен вдоль касательной к траектории.

Введем направляющий вектор касательной единичной длины :
.
Покажем, что длина этого вектора равна единице. Действительно, поскольку
, то:
.

Тогда вектор скорости точки можно представить в виде:
.

Ускорение материальной точки

Ускорение материальной точки - это производная ее скорости по времени.

Аналогично предыдущему, получаем компоненты ускорения (проекции ускорения на оси координат):
;
;
;
.
Модуль ускорения:
.

Тангенциальное (касательное) и нормальное ускорения

Теперь рассмотрим вопрос о направлении вектора ускорения по отношению к траектории. Для этого применим формулу:
.
Дифференцируем ее по времени, применяя правило дифференцирования произведения:
.

Вектор направлен по касательной к траектории. В какую сторону направлена его производная по времени ?

Чтобы ответить на этот вопрос, воспользуемся тем, что длина вектора постоянна и равна единице. Тогда квадрат его длины тоже равен единице:
.
Здесь и далее, два вектора в круглых скобках обозначают скалярное произведение векторов. Продифференцируем последнее уравнение по времени:
;
;
.
Поскольку скалярное произведение векторов и равно нулю, то эти векторы перпендикулярны друг другу. Так как вектор направлен по касательной к траектории, то вектор перпендикулярен к касательной.

Первую компоненту называют тангенциальным или касательным ускорением:
.
Вторую компоненту называют нормальным ускорением:
.
Тогда полное ускорение:
(2) .
Эта формула представляет собой разложение ускорения на две взаимно перпендикулярные компоненты - касательную к траектории и перпендикулярную к касательной.

Поскольку , то
(3) .

Тангенциальное (касательное) ускорение

Умножим обе части уравнения (2) скалярно на :
.
Поскольку , то . Тогда
;
.
Здесь мы положили:
.
Отсюда видно, что тангенциальное ускорение равно проекции полного ускорения на направление касательной к траектории или, что тоже самое, на направление скорости точки.

Тангенциальное (касательное) ускорение материальной точки - это проекция ее полного ускорения на направление касательной к траектории (или на направление скорости).

Символом мы обозначаем вектор тангенциального ускорения, направленный вдоль касательной к траектории. Тогда - это скалярная величина, равная проекции полного ускорения на направление касательной. Она может быть как положительной, так и отрицательной.

Подставив , имеем:
.

Подставим в формулу:
.
Тогда:
.
То есть тангенциальное ускорение равно производной по времени от модуля скорости точки. Таким образом, тангенциальное ускорение приводит к изменению абсолютной величины скорости точки . При увеличении скорости, тангенциальное ускорение положительно (или направлено вдоль скорости). При уменьшении скорости, тангенциальное ускорение отрицательно (или направлено противоположно скорости).

Теперь исследуем вектор .

Рассмотрим единичный вектор касательной к траектории . Поместим его начало в начало системы координат. Тогда конец вектора будет находиться на сфере единичного радиуса. При движении материальной точки, конец вектора будет перемещаться по этой сфере. То есть он будет вращаться вокруг своего начала. Пусть - мгновенная угловая скорость вращения вектора в момент времени . Тогда его производная - это скорость движения конца вектора. Она направлена перпендикулярно вектору . Применим формулу для вращающегося движения. Модуль вектора:
.

Теперь рассмотрим положение точки для двух близких моментов времени. Пусть в момент времени точка находится в положении , а в момент времени - в положении . Пусть и - единичные векторы, направленные по касательной к траектории в этих точках. Через точки и проведем плоскости, перпендикулярные векторам и . Пусть - это прямая, образованная пересечением этих плоскостей. Из точки опустим перпендикуляр на прямую . Если положения точек и достаточно близки, то движение точки можно рассматривать как вращение по окружности радиуса вокруг оси , которая будет мгновенной осью вращения материальной точки. Поскольку векторы и перпендикулярны плоскостям и , то угол между этими плоскостями равен углу между векторами и . Тогда мгновенная скорость вращения точки вокруг оси равна мгновенной скорости вращения вектора :
.
Здесь - расстояние между точками и .

Таким образом мы нашли модуль производной по времени вектора :
.
Как мы указали ранее, вектор перпендикулярен вектору . Из приведенных рассуждений видно, что он направлен в сторону мгновенного центра кривизны траектории. Такое направление называется главной нормалью.

Нормальное ускорение

Нормальное ускорение

направлено вдоль вектора . Как мы выяснили, этот вектор направлен перпендикулярно касательной, в сторону мгновенного центра кривизны траектории.
Пусть - единичный вектор, направленный от материальной точки к мгновенному центру кривизны траектории (вдоль главной нормали). Тогда
;
.
Поскольку оба вектора и имеют одинаковое направление - к центру кривизны траектории, то
.

Из формулы (2) имеем:
(4) .
Из формулы (3) находим модуль нормального ускорения:
.

Умножим обе части уравнения (2) скалярно на :
(2) .
.
Поскольку , то . Тогда
;
.
Отсюда видно, что модуль нормального ускорения равен проекции полного ускорения на направление главной нормали.

Нормальное ускорение материальной точки - это проекция ее полного ускорения на направление, перпендикулярное к касательной к траектории.

Подставим . Тогда
.
То есть нормальное ускорение вызывает изменение направления скорости точки, и оно связано с радиусом кривизны траектории .

Отсюда можно найти радиус кривизны траектории:
.

И в заключении заметим, что формулу (4) можно переписать в следующем виде:
.
Здесь мы применили формулу для векторного произведения трех векторов:
,
в которую подставили
.

Итак, мы получили:
;
.
Приравняем модули левой и правой частей:
.
Но векторы и взаимно перпендикулярны. Поэтому
.
Тогда
.
Это известная формула из дифференциальной геометрии для кривизны кривой.

См. также:

Рассмотрим некоторые простейшие виды движения точки, часто встречающиеся в практике.

Равномерным движением точки называется движение ее с постоянной величиной алгебраической скорости или

где С - постоянная интегрирования.

Пусть в начальный момент времени положение точки М на траектории характеризовалось тогда и

Таким образом, при равномерном движении путь, проходимый точкой, линейно зависит от времени.

Равнопеременное движение точки

Равнопеременным движением точки называется такое движение ее, при котором алгебраическая величина тангенциального ускорения остается постоянной:

Если знак а совпадает со знаком скорости, то движение называется равноускоренным. При несовпадении знаков а и движение называется равнозамедленным. Из последнего равенства имеем:

где постоянная интегрирования. Если при то

Таким образом, при равномерном движении скорость линейно зависит от времени. Переписывая последнее равенство в виде:

где -постоянная интегрирования. Определяя из условия, что при находим

Таким образом, при равнопеременном движении путь, проходимый точкой, представляет собой квадратный трехчлен от t.

Круговое движение точки

Движение точки по окружности или круговое движение часто встречается в практике. Пусть точка М движется по окружности радиуса R против хода часовой стрелки (рис. 24). Отсчитывая дугу от некоторого начального положения точки, запишем ее через центральный угол в виде:

Алгебраическая скорость точки будет:

где - называется угловой скоростью точки и обозначается через со, размерность ее .

Используя понятие угловой скорости, запишем:

Отсюда, скорость точки в круговом движении равна произведению радиуса траектории на угловую скорость.

Тангенциальное ускорение точки равно:

где - называется угловым ускорением и обозначается через размерность его ,

Нормальное ускорение точки будет:

Так как оно направлено к центру окружности, то его часто называют центростремительным. Модуль полного ускорения точки равен

При равномерном движении точки по окружности Следовательно, касательное ускорение в этом случае отсутствует и имеется лишь постоянное по величине центростремительное ускорение.

При равнопеременном круговом движении

Физический смысл тангенциального и нормального ускорения точки

Введение понятия равномерного и равнопеременного движения точки позволяет указать физический смысл тангенциального и нормального ускорения точки. Действительно, пусть тангенциальное ускорение всюду равно нулю:

Тогда, если то из последнего равенства имеем:

или движение точки совершается с постоянной по величине скоростью, т. е. точка движется равномерно.

Отсюда можно сделать вывод, что наличие тангенциального ускорения характеризует неравномерность движения точки по траектории. Пусть далее нормальное ускорение равно нулю:

Тогда, если то нормальное ускорение может тождественно равняться нулю только в случае, когда

или траектория точки есть прямая - движение прямолинейное.

Таки образом, отсутствие нормального ускорения в течение некоторого интервала времени свидетельствует о прямолинейности движения. Отсюда можно сделать вывод, что наличие нормального ускорения указывает на кривизну траектории.

Если одновременно тангенциальное и нормальное ускорения равны тождественно нулю, то движение точки будет равномерным и прямолинейным. Если только в отдельный момент времени тангенциальное ускорение равно нулю, то это указывает на то, что на графике функции этому моменту соответствуют экстремумы функции или ее точки перегиба. Если только в отдельный момент времени нормальное ускорение равно нулю, то это указывает на то, что в этот момент скорость движущейся точки равна нулю или радиус кривизны траектории равен бесконечности.


Кинематика точки, кинематика твердого тела, поступательное движение, вращательное движение, плоскопараллельное движение, теорема о проекциях скоростей, мгновенный центр скоростей, определение скорости и ускорений точек плоского тела, сложное движение точки

Содержание

Кинематика твердого тела

Чтобы однозначно определить положение твердого тела, нужно указать три координаты (x A , y A , z A ) одной из точек A тела и три угла поворота. Таким образом, положение твердого тела определяется шестью координатами. То есть твердое тело имеет шесть степеней свободы.

В общем случае, зависимость координат точек твердого тела относительно неподвижной системы координат определяется довольно громоздкими формулами. Однако скорости и ускорения точек определяются довольно просто. Для этого нужно знать зависимость координат от времени одной, произвольным образом выбранной, точки A и вектора угловой скорости . Дифференцируя по времени, находим скорость и ускорение точки A и угловое ускорение тела :
; ; .
Тогда скорость и ускорение точки тела с радиус вектором определяется по формулам:
(1) ;
(2) .
Здесь и далее, произведения векторов в квадратных скобках означают векторные произведения.

Отметим, что вектор угловой скорости одинаков для всех точек тела . Он не зависит от координат точек тела. Также вектор углового ускорения одинаков для всех точек тела .

См. вывод формул (1) и (2) на странице: Скорость и ускорение точек твердого тела > > >

Поступательное движение твердого тела

При поступательном движении, угловая скорость равна нулю. Скорости всех точек тела равны. Любая прямая, проведенная в теле, перемещается, оставаясь параллельной своему начальному направлению. Таким образом, для изучения движения твердого тела при поступательном движении, достаточно изучить движение одной любой точки этого тела. См. раздел .

Равноускоренное движение

Рассмотрим случай равноускоренного движения. Пусть проекция ускорения точки тела на ось x постоянна и равна a x . Тогда проекция скорости v x и x - координата этой точки зависят от времени t по закону:
v x = v x0 + a x t ;
,
где v x0 и x 0 - скорость и координата точки в начальный момент времени t = 0 .

Вращательное движение твердого тела

Рассмотрим тело, которое вращается вокруг неподвижной оси. Выберем неподвижную систему координат Oxyz с центром в точке O . Направим ось z вдоль оси вращения. Считаем, что z - координаты всех точек тела остаются постоянными. Тогда движение происходит в плоскости xy . Угловая скорость ω и угловое ускорение ε направлены вдоль оси z :
; .
Пусть φ - угол поворота тела, который зависит от времени t . Дифференцируя по времени, находим проекции угловой скорости и углового ускорения на ось z :
;
.

Рассмотрим движение точки M , которая находится на расстоянии r от оси вращения. Траекторией движения является окружность (или дуга окружности) радиуса r .
Скорость точки :
v = ω r .
Вектор скорости направлен по касательной к траектории.
Касательное ускорение :
a τ = ε r .
Касательное ускорение также направлено по касательной к траектории.
Нормальное ускорение :
.
Оно направлено к оси вращения O .
Полное ускорение :
.
Поскольку векторы и перпендикулярны друг другу, то модуль ускорения :
.

Равноускоренное движение

В случае равноускоренного движения, при котором угловое ускорение постоянно и равно ε , угловая скорость ω и угол поворота φ изменяются со временем t по закону:
ω = ω 0 + ε t ;
,
где ω 0 и φ 0 - угловая скорость и угол поворота в начальный момент времени t = 0 .

Плоскопараллельное движение твердого тела

Плоскопараллельным или плоским называется такое движение твердого тела, при котором все его точки перемещаются параллельно некоторой фиксированной плоскости. Выберем прямоугольную систему координат Oxyz . Оси x и y расположим в плоскости, в которой происходит перемещение точек тела. Тогда все z - координаты точек тела остаются постоянными, z - компоненты скоростей и ускорений равны нулю. Векторы угловой скорости и углового ускорения наоборот, направлены вдоль оси z . Их x и y компоненты равны нулю.

Проекции скоростей двух точек твердого тела на ось, проходящую через эти точки, равны друг другу.
v A cos α = v B cos β .

Мгновенный центр скоростей

Мгновенным центром скоростей называется точка плоской фигуры, скорость которой в данный момент равна нулю.

Чтобы определить положение мгновенного центра скоростей P плоской фигуры, нужно знать только направления скоростей и двух его точек A и B . Для этого через точку A проводим прямую, перпендикулярную направлению скорости . Через точку B проводим прямую, перпендикулярную направлению скорости . Точка пересечения этих прямых есть мгновенный центр скоростей P . Угловая скорость вращения тела:
.


Если скорости двух точек параллельны друг другу, то ω = 0 . Скорости всех точек тела равны друг другу (в данный момент времени).

Если известна скорость какой либо точки A плоского тела и его угловая скорость ω , то скорость произвольной точки M определяется по формуле (1) , которую можно представить в виде суммы поступательного и вращательного движения:
,
где - скорость вращательного движения точки M относительно точки A . То есть скорость, которую имела бы точка M при вращении по окружности радиуса |AM| с угловой скоростью ω , если бы точка A была неподвижной.
Модуль относительной скорости:
v MA = ω |AM| .
Вектор направлен по касательной к окружности радиуса |AM| с центром в точке A .

Определение ускорений точек плоского тела выполняется с применением формулы (2) . Ускорение любой точки M равно векторной сумме ускорения некоторой точки A и ускорения точки M при вращении вокруг точки A , считая точку A неподвижной:
.
можно разложить на касательное и нормальное ускорения:
.
Касательное ускорение направлено по касательной к траектории. Нормальное ускорение направлено из точки M к точке A . Здесь ω и ε - угловая скорость и угловое ускорение тела.

Сложное движение точки

Пусть O 1 x 1 y 1 z 1 - неподвижная прямоугольная система координат. Скорость и ускорение точки M в этой системе координат будем называть абсолютной скоростью и абсолютным ускорением .

Пусть Oxyz - подвижная прямоугольная система координат, скажем, жестко связанная с неким твердым телом, движущимся относительно системы O 1 x 1 y 1 z 1 . Скорость и ускорение точки M в системе координат Oxyz будем называть относительной скоростью и относительным ускорением . Пусть - угловая скорость вращения системы Oxyz относительно O 1 x 1 y 1 z 1 .

Рассмотрим точку, совпадающую, в данный момент времени, с точкой M и неподвижной, относительно системы Oxyz (точка, жестко связанная с твердым телом). Скорость и ускорение такой точки в системе координат O 1 x 1 y 1 z 1 будем называть переносной скоростью и переносным ускорением .

Теорема о сложении скоростей

Абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.

Теорема о сложении ускорений (теорема Кориолиса)

Абсолютное ускорение точки равно векторной сумме относительного, переносного и кориолисова ускорений:
,
где
- кориолисово ускорение.

Использованная литература:
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.

Тангенциальное ускорение характеризует изменение скорости по модулю (величине) и направлено по касательной к траектории:

,

где  производная модуля скорости,  единичный вектор касательной, совпадающий по направлению со скоростью.

Нормальное ускорение характеризует изменение скорости по направлению и направлено по радиусу кривизны к центру кривизны траектории в данной точке:

,

где R  радиус кривизны траектории,  единичный вектор нормали.

Модуль вектора ускорения может быть найден по формуле

.

1.3. Основная задача кинематики

Основная задача кинематики заключается в нахождении закона движения материальной точки. Для этого используются следующие соотношения:

;
;
;
;

.

Частные случаи прямолинейного движения:

1) равномерное прямолинейное движение: ;

2) равнопеременное прямолинейное движение:
.

1.4. Вращательное движение и его кинематические характеристики

При вращательном движении все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. Для характеристики вращательного движения вводятся следующие кинематические характеристики (рис. 3).

Угловое перемещение
 вектор, численно равный углу поворота тела
за время
и направленный вдоль оси вращения так, что, глядя вдоль него, поворот тела наблюдается происходящим по часовой стрелке.

Угловая скорость  характеризует быстроту и направление вращения тела, равна производной угла поворота по времени и направлена вдоль оси вращения как угловое перемещение.

При вращательном движении справедливы следующие формулы:

;
;
.

Угловое ускорение характеризует быстроту изменения угловой скорости с течением времени, равно первой производной угловой скорости и направлено вдоль оси вращения:

;
;
.

Зависимость
выражает закон вращения тела.

При равномерном вращении:  = 0,  = const,  = t.

При равнопеременном вращении:  = const,
,
.

Для характеристики равномерного вращательного движения используются период вращения и частота вращения.

Период вращения Т – время одного оборота тела, вращающегося с постоянной угловой скоростью.

Частота вращения  – количество оборотов, совершаемых телом за единицу времени.

Угловая скорость может быть выражена следующим образом:

.

Связь между угловыми и линейными кинематическими характеристиками (рис. 4):

2. Динамика поступательного и вращательного движений

    1. Законы Ньютона Первый закон Ньютона: всякое тело находится в состоянии покоя или равномерного прямолинейного движения, пока воздействие со стороны других тел не выведет его из этого состояния.

Тела, не подверженные внешним воздействиям, называются свободными телами. Система отсчёта, связанная со свободным телом, называется инерциальной системой отсчёта (ИСО). По отношению к ней любое свободное тело будет двигаться равномерно и прямолинейно или находиться в состоянии покоя. Из относительности движения следует, что система отсчёта, движущаяся равномерно и прямолинейно по отношению к ИСО, также является ИСО. ИСО играют важную роль во всех разделах физики. Это связано с принципом относительности Эйнштейна, согласно которому математическая форма любого физического закона должна иметь один и тот же вид во всех инерциальных системах отсчёта.

К основным понятиям, используемым в динамике поступательного движения, относятся сила, масса тела, импульс тела (системы тел).

Силой называется векторная физическая величина, являющаяся мерой механического действия одного тела на другое. Механическое действие возникает как при непосредственном контакте взаимодействующих тел (трение, реакция опоры, вес и т.д.), так и посредством силового поля , существующего в пространстве (сила тяжести, кулоновские силы и т.д.). Сила характеризуется модулем, направлением и точкой приложения.

Одновременное действие на тело нескольких сил ,,...,может быть заменено действием результирующей (равнодействующей) силы:

=++...+=.

Массой тела называется скалярная величина, являющаяся мерой инертности тела. Под инертностью понимается свойство материальных тел сохранять свою скорость неизменной в отсутствие внешних воздействий и изменять её постепенно (т.е. с конечным ускорением) под действием силы.

Импульсом тела (материальной точки) называется векторная физическая величина, равная произведению массы тела на его скорость:
.

Импульс системы материальных точек равен векторной сумме импульсов точек, составляющих систему:
.

Второй закон Ньютона : скорость изменения импульса тела равна действующей на него силе:

.

Если масса тела остается постоянной, то ускорение, приобретаемое телом относительно инер­ци­аль­ной системы отсчета, прямо пропорционально действующей на него силе и обратно пропорционально массе тела:

.


Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рисунок 1 – Тангенциальное ускорение

Направление вектора тангенциального ускорения совпадает с направлением линейной скорости или противоположно ему, из рис. 1. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения, показано на рис. 1. Нормальное ускорение характеризует изменение скорости по направлению и обозначается n . Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(9)

(10)

Направление полного ускорения также определяется правилом сложения векторов:

(11)

1.1.5 Поступательное и вращательное движение абсолютно твёрдого тела

Движение тела считается поступательным , если любой отрезок прямой линии, жестко связанный с телом, всё время перемещается параллельно самому себе. При поступательном движении все точки тела совершают одинаковые перемещения, проходят одинаковые пути, имеют равные скорости и ускорения, описывают одинаковые траектории.

Вращение твёрдого тела вокруг неподвижной оси – движение, при котором все точки тела описывают окружности, центры которых находятся на одной прямой, перпендикулярной плоскостям этих окружностей. Сама эта прямая является осью вращения.

При вращении тела радиус окружности, описываемой точкой этого тела, повернётся за интервал времени на некоторый угол. Вследствие неизменности взаимного расположения точек тела на такой же угол повернуться за тоже время радиусы окружностей, описываемых любыми другими точками тела. Этот угол является величиной, характеризующей вращательное движение всего тела в целом. Отсюда можно сделать вывод, что для описания вращательного движения абсолютно твёрдого тела вокруг неподвижной оси надо знать только одну переменную – угол, на который повернётся тело за определённое время.

Связь между линейной и угловой скоростями для каждой точки твёрдого тела даётся формулой:

(12)